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Pseudospectral methods are commonly used to obtain accurate solutions to initial- 
boundary value problems. Especially with second (or higher) order derivatives in space, the 
corresponding differentiation matrices tend to have large spurious eigenvalues (leading, for 
example, to severe time step restrictions in case of explicit time-stepping methods). We 
introduce here a new procedure for incorporating boundary conditions, which reduces 
spurious eigenvalues by an order of magnitude or more (also allowing more freedoms in the 
choice of grid point locations). 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

Pseudospectral (PS) methods are, in many applications, attractive alternatives to 
finite difference (FD) methods. Originally, PS methods were most often thought of 
in terms of expansions in some function space (trigonometric series, orthogonal 
polynomials, etc., e.g. [ 1,5]). Another viewpoint (exclusively taken in this study) 
is to consider PS methods as special cases of very high order FD methods. For 
periodic problems, the Fourier-PS method represents the limit of FD methods 
when the order of accuracy (and width of FD stencils) tends to infinity [2,4]. In 
this limit, typical stability conditions for explicit methods remain At = 0( l/N) and 
At = 0( l/N’) in cases of first and second derivatives in space. In connection with 
popular time-stepping methods, such as a fourth-order Runge-Kutta method, the 
above-eight-order accuracy in space tends to make the time steps limited by 
accuracy rather than by stability. 

In the presence of boundaries, PS methods no longer correspond to FD methods 
with stencil widths tending to infinity (across periodic repetitions of the data), but 
rather to FD methods extending over only one set of the grid points. Another 
fundamental difference is that whatever distribution of grid- (collation-) points is 
used, at least some weights will diverge as N is increased. In the case of equidistant 
points, the largest weights (occurring for approximations to derivatives at points 
near the boundaries) will grow exponentially with N. By clustering the grid points 
towards the boundaries, for example, as in the Chebyshev method (xj = - cos zj/N, 
j=O, 1 9 ***, N, for the interval [ - 1, l]), the growth rate is reduced to polynomial in 
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N. However, “spurious eigenvalues” are introduced (worsening typical explicit time 
step restrictions to At = 0( 1/N4) in case of second derivatives in space). 

The two main ideas which will be pursued in this study are: 

1. We introduce a parameter CI such that a = 0 and CI = 0.5 correspond to 
equi-spaced and Chebyshev grids, respectively. All test results are given for the 
range 0 < c1< 0.6 (the fact that only the case CI = 0.5 corresponds to a well-known 
class of orthogonal polynomials appears to be of no consequence). 

2. The boundary difficulties in PS methods can be traced to the “Runge- 
phenomenon”: violent oscillations of interpolating polynomials near the ends of an 
interval (the Chebyshev method suppresses these by clustering the grid points 
there). The following example suggests a complementary strategy: Assume we are 
to solve 

u, = u xx (1) 

with initial condition 

46 0) = f(x) (2) 

and boundary conditions 

u( f 1, t) = 0. (3) 

The standard PS approach incorporates (3), but ignores its immediate consequen- 
ces u”( + 1) = 0, uc4)( f 1) = 0, etc. Any similar “extra” conditions (obtained from 
differentiated versions of the equation and the boundary conditions) are in general 
inconsistent with the Runge oscillations and can be used to suppress them. Suitably 
incorporated into differentiation matrices, they are found to sharply reduce their 
largest eigenvalues as well as their norms (both critical quantities in connection 
with time step restrictions, as clarified in recent studies by L. N. Trefethen et al. 
[9, lo]) without any adverse effects on the accuracy. 

The proposed numerical procedure can be seen as a “filter”-method. Since it 
amounts to a low rank update of a “regular” spectral method, fast transform 
algorithms (like FFTs in case of the Chebyshev node distribution) can still be 
utilized. Alternatively, the complete scheme can be implemented by means of (full) 
matrix x vector multiplications. Although this costs O(N’) operations per time step 
vs O(N log N) for the fastest transform-based case, the multiplication method is still 
faster on most modern computers unless N is quite large ( 2 100 according to [8]). 
In this study, we take the matrix x vector approach because of its flexibility and 
conceptual simplicity. 

In the following sections (2-5), we discuss: 

2. Generation of elements of differentiation matrices; typical sizes of their 
elements; 
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3. Incorporation of “extra” boundary information; 
4. The eigenvalues of the differentiation matrices, their L2-norms, measures of 

“normality,” etc. 
5. Concluding observations and heuristic interpretations. 

2. DIFFERENTIATION MATRICES 

Given N+ 1 grid points xi, - 1 =x0 < x1 < ... <x,,,= 1, PS differentiation 
matrices D“ for derivatives of orders k = 1 and 2 can be written down in a closed 
form which is well suited for numerical calculation [7]. Here Dk denotes an 
(N- 1) x (N- 1 )-matrix in which row j contains the weights in the approximation 
of dk/dxk at x=xj. Alternatively, the algorithm in [3] can be used for any value 
of k (although this results in a higher operation count when k = 1 or 2). 

With an equi-spaced grid (xj= -1 + 2j/N, j= 0, 1, . . . . N) and second-order 
accurate finite differences, the standard FD approximation to dd/dx2 corresponds to 
the differentiation matrix 

-2 1 
l-2 1 

D;,, = [ . . . x N2f4. (4) 
. . . 

1 -2 

1 
Figure la displays graphically the elements of this matrix in the case of N= 10. 
With the same vertical scaling, Figs. lb and c show the corresponding PS matrices 
on equi-spaced and Chebyshev grids, respectively. The different character of these 
two PS cases is even more striking when N = 20 (Figs. 2a and b; note that the 

TABLE I 

Different Distributions of Grid Points in the Interval [ - 1, l] 

Node locations 
x,, j = 0, 1, . . . . N 

Local density of nodes 
(as function of x; 0 < x < 1) 

Constants c, s.t. 
I’ 1 d,(x) dx = 1 

Equi-spaced x, = - 1 + 2j/N 1 co=- 2 

Chebyshev xi = - cos(nj/N) 1 
Cl/l =; 

Generalized 
distribution 
(a<l) 

j X, 
-= d,(t) dt 

r( 3/2 - a) 
N I -1 

d,(x) = (1 :;2)z c~=nq-(~ -.a) 
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Chebyshev grid 

Equi-spaced 
grid 

I I X 
I 

X(0) = -1. X(N/2) = 0. X(N) = 1. 

FIG. 3. The distribution of grid points for a between -0.5 and + 1.0 (displayed for N= 20). 

vertical scales here differ by a factor of 100). The largest elements grow like 
0(2NN-“2 log N) and O(N4), respectively. 

It is natural to ask whether “intermediate” node distributions could prove advan- 
tageous. Noting the relations shown in Table I, we introduce such grids by means 
of 

j r(3/2-a) x, dt 
N=rc”*r(l-rX) s -1 (l-t*)“’ 

j=O, 1, . . . . N, c1< 1. (5) 

Figure 3 illustrates how these grid points move with a. Figure Id shows the differen- 
tiation matrix for LX = 0.4 (suggesting a slight reduction in norm as well as a small 
improvement in symmetry). However, as we will see in Sections 3 and 4 (and as was 
noted in [7], where a different continuation between equi-spaced and Chebyshev 
grids was considered), variation of a alone will not improve either accuracy or 
stability (apart from for very low values of N). 

3. INCORPORATION OF ADDITIONAL BOUNDARY INFORMATION 

As Figs. lb and 2a indicated (in the “extreme” case of a = 0), weights for the 
approximations to d*/dx*, at the first few interior gridpoints, are highly oscillatory 
(and are largest near the center of the grid). The same is true for approximations 
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to any derivative at the boundary itself (not part of the differentiation matrix). If 
we again consider the model problem (l)-(3) or the eigenvalue problem 

24 x.=h 

u(+l)=o 
(6) 

we know that dk/dxk is zero at both boundaries for k = 0,2,4, . . . . etc. We can 
add/subtract multiples of the corresponding difference formulas from each row of 
the differentiation matrix, for example, to minimize the L2-norm of each row. The 
bottom two diagrams in Fig. 2 (c and d) show the effect of using two “extra” condi- 
tions at each boundary. Reductions in element sizes of orders 1000 and 10 are seen 
for u = 0 and tl = 0.5, respectively. The resulting matrices look relatively similar in 
the two cases. 

4. EIGENVALUE~ OF DIFFERENTIATION MATRICES 

Equation (6) has eigenvalues 

10000 

6000 

6000 

4000 

2000 

0 IC 

k = 1, 2, 3, . . . (7) 

,I 
. 

1 6 11 16 021 26 31 36 39 

A Chebyshev 

- Exact 

-)-- Equi-spaced 

FIG. 4. Magnitudes of eigenvalues of PS diNerentiation matrices (equi-spaced and Chebyshev grids) 
compared to analytic eigenvalues, N = 40. 
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with corresponding eigenfunctions 

u(x) = 
cos(;knx) , k odd, 
sin( iknx) , k even. 

Weideman and Trefethen [ 111 studied the eigenvalues of PS differentiation 
matrices for solving (6). They noted that these followed the pattern shown in Fig. 4 
(displayed here for N= 40). They also showed that the largest eigenvalue grows at 
a rate of 0.048 x N4 (a lower rate than for grids based on Legendre or Chebyshev 
zeros, which lead to 0.102 x N4 and 0.303 x N4, respectively). 

The left columns of diagrams in Figs. 5 and 6 (N= 16 and N = 64, respectively) 
show how the computed eigenvalues vary with a and with the number of “extra” 
items of boundary information that have been incorporated. Eigenvalues in 
magnitude exceeding 2000 and 35,000, respectively, have been reduced to these 
values, with the true values for the largest ones indicated explicitly for a = 0.5 and 
a = 0.6. The right columns show log,,, of the magnitude of the errors in the eigen- 
values (compared to their analytical values (7); the surfaces have not been drawn 
below the level - 10, i.e., errors < lo- lo). 

With no “extra” boundary information (top row in the Figs. 5 and 6), values of 
a above 0.5 are seen to be unacceptable both because of lost accuracy and because 
of extreme growth of large spurious eigenvalues. Values of a less than 0.5 also lead 
to lost accuracy (for large N) and (not visible in these figures) to a near- 
catastrophic growth in the norm of the differentiation matrix. With “extra” 
boundary information incorporated, a range of a’s 60.5 opens up throughout 
which the accuracy remains consistently high. 

A close look at the diagrams a-d in Figs. 5 and 6 show that, for every “extra” 
boundary condition used (at either end), the largest remaining spurious eigenvalue 
has been reduced to exactly zero. This is a consequence of the least squares pro- 
cesses; each modified differentiation matrix has a null-space spanned by the vectors 
representing the “extra” boundary conditions. As the “extra” boundary information 
is consistent with the physically relevant eigenmodes, they have remained largely 
unaffected. 

Figures 7a-c show how the a-interval, featuring the highest accuracies, varies 
with N (shown for N = 8, 32, and 128, respectively, in order to complement the 
data in Figs. 5 and 6; each curve corresponds to a cross section in these figures, 
placed at the eigenvalue number N/2 - 1). In this and the following figures, the 
labels for the curves (O-3) identify how many “extra” items of information were 
applied at each boundary. The regular Chebyshev case (0 “extra” boundary condi- 
tions, a = 0.5) is marked by a solid black dot. 

Figures 8ac show the magnitudes of the largest eigenvalues. They are seen to be 
much reduced throughout the a-range which corresponds to the best accuracy (and 
they go down significantly with each “extra” boundary condition that is applied). 

Figures 9a-c show similarly the L*-norms of the differentiation matrices. Again, 
the values are seen to be strongly reduced for each “extra” boundary condition, and 
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MAGNITUDES OF 
EIGENVALUES 

LOG,, OF RELATIVE ERRORS 

e 
IN EIGENVALUES 
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d 

UY ?l) = 0 

2,000 
1,600 
1,200 
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u’“( Zl) * 0 Q 

UT Zl) = 0 

FIG. 5. Magnitude of eigenvalues and log,, of their relative errors, N= 16. 
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MAGNITUDES OF LO( 

N=64 EIGENVALUES 
Yilo OF RELATIVE ERRORS 

IN EIGENVALUES 

FIG. 6. Magnitude of eigenvalues and log,,, of their relative errors, N = 64. 
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a 
(log,,of the error in their magnitudes) 
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FIG. 7. Accuracies of the (N/2- l)th eigenvalue for different a and N= 8, 32, and 128. 
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FIG. 8. Largest eigenvalue (in magnitude) for different OL and N = 8, 32, and 128. 
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FIG. 9. L*-norms for different t( and N= 8, 32, and 128. 
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a 

b 

0.2 

0 
0. .l .2 .3 .4 .6 & .6 

trl N=128 

FIG. 10. Size of commutator for different a and N= 8, 32, and 128. 
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they keep a comparatively constant level across the a-range which featured the 
highest accuracy. 

The matching reductions in both largest eigenvalue and Lz-norm imply corre- 
sponding improvements in “eigenvalue stability” and “Lax stability” [lo] or 
similarly “time-” and “space-” stabilities [6, 73, i.e., the limits of t + cc, N fixed, 
and N + cc, t fixed, respectively. 

Figures 1Oa-c show still another measure of the differentiation matrices, the size 
of their “commutators”: 

(9) 

This quantity always satisfies 0 < C(D) < 1 and is equal to zero if and only if D is 
“normal,” i.e., has a full set of orthogonal eigenvectors. The “normality” is seen to 
be good throughout the a-ranges of interest. 

5. CONCLUDING OBSERVATIONS 

The technique of modifying the differentiation matrices by “extra” items of 
boundary information (derived from the original equations) has been found to 

Spectral radius of 
differentiation matrix 

‘.OE+OQ ~ 

l.OE+07 

l.OE+06 

l.OE+05 

1.OE+04 

l.OE+03 

l.OE+02 

l.OE+Ol 

Number of ‘extra’ 
boundary oond. 

+O 
-2 
-4 T8 T 8 

L- 10 
Spcotrill rcdluc. 

e 
cnclytical problem: 

(NlT/2)* 

._- a 16 32 - 64 128 256 N 
FIG. 11. Spectral radius of differentiation matrix for different numbers of “extra” boundary conditions 
(a=OS). 
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significantly reduce both the norms and the largest spurious eigenvalues of spectral 
differentiation matrices. Without this technique, grids need to feature a quadratic 
(type CI =0.5)-clustering of points near the ends. With it, considerably greater 
freedom is obtained (without any loss in accuracy). There is no need for a grid to 
feature the same type of clustering (or for the same number of “extra” boundary 
conditions to be used) at both boundaries. 

It is trivial to differentiate the model equation (1) any number of times (and thus, 
to generate any number of “extra” boundary conditions). In most equations of 
practical interest (involving variable coefficients, nonlinearities, more involved 
primary boundary conditions, more space dimensions, etc.), the algebraic com- 
plexity is likely to be more severe. Therefore, this study has focused on the use of 
only a few “extra” boundary conditions. Mainly for theoretical interest, Figs. 11 and 
12 are included to show the trends if large numbers of “extra” boundary conditions 
can be used. Figure 11 shows that the reduction in spectral radius (for each “extra” 
boundary condition) is essentially independent of N. 

The number of “extra” boundary conditions might alternatively be chosen as a 
fixed fraction of N. Since there only are about (1 - 2/z) x N z 0.35N spurious eigen- 
values (in the case c1= 0.5; cf. Fig. 4), it is most natural to focus on fractions smaller 
than 0.35. The results in Fig. 12 suggest that the growth rates in these cases get 

Spectral radius of 
differentiation matrix 

l*oE+Og * 
A 

l.OE+07 

l.OE+OS = 

l.OE+04 J 

a 16 32 64 128 256 N 

FIG. 12. Spectral radius of differentiation matrix for different ratios of numbers of “extra” boundary 
conditions to N (a = 0.5). 

Number of ‘extra’ 
boundary cond. 
applied, as 
proportion of N 

C 0 

c l/64 
c l/32 
c l/16 
+ ua 

Spwtrsl radius, 
analytical problem: 
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sharply reduced, from O(N4) to something well below 0(N3) (possibly as low as 
0(N2) for N sufficiently large). 

Returning to the right column of diagrams in Fig. 6, the “valley” at LY = 0.5 in 
Fig. 6e reflects the well-known high accuracy of Chebyshev approximations. Its 
minimax error for interpolation is within a small factor (4 + (2/7c) log N) of the 
lowest possible limit for any polynomial. Heuristically, it seems likely that it is 
this limit for the optimal polynomial which prevents further gains in absolute 
accuracy in the near-constant high accuracy region extending down from a = 0.5 in 
Figs. 6f, g, and h. At a =OS a “crossover” occurs as the accuracy (for LX > 0.5) 
instead becomes limited by the depletion of points near the center of the domain 
(no longer allowing 2/x of the modes present to be resolved). The third “barrier,” 
limiting accuracy for low values of a (i.e., preventing the use of near-equi-spaced 
grids), has been the topic of this study. The method of “extra” boundary informa- 
tion has allowed us to shift this barrier down towards lower values of a. 
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